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ABSTRACT 

A numerical comparison of the exact solution, 
the uniform asymptotic solution, and the non- 
uniform asymptotic solution of a field that produces 
a circular caustic is performed.   It is seen that the 
uniform asymptotic solution is accurate even at the 
caustic for moderate values of ka.   Curves and 
data are given as a function of ka and distances 
from the caustic.   The asymptotic expressions are 
derived both from the exact solution and from the 
physics of the circular caustic. 
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SECTION I 

DERIVATION 

The uniform asymptotic expansion developed in Lewis' paper* is valid 

in the neighborhood of a caustic, and it reduces to the usual geometrical 

optics representation away from the caustic.   In Appendix I, these ex- 

pansions are calculated for the circular caustic.   Herein, an exact so- 

lution of 

(v2 + k2) ix = 0 , (1) 

whose asymptotic expansions agree with that of Appendix I, enables us to 

obtain a numerical comparison of an exact solution and its uniform and non- 

uniform approximations. 

An exact solution of (1) in two dimensions, where polar coordinates 

are used, is the function 

M = eika\a»kr,. (2) 

Here  J (z)  is the Bessel function of order  n.   We obtain a uniform asymp- 
n 

totic expansion of (2) by using the following formula, given in Asymptotic 
t 

Approximations by H. Jeffreys: 

Jn (n sech MW-^ ^      n"l/3  Ai (n^3 £) ; £ = I (M_tanh M)'     (3) 

vtan // J 

*  R. M.  Lewis, Uniform Representation of Geometrical Optics Fields 
Near a Caustic, The MITRE Corporation, ESD-TR-65-404, Bedford, 
Mass. , May 1966. 

f 
H. Jeffreys, Asymptotic Approximations, England, Oxford University 
Press, 1962, p.  84, Equation (36). 



In (3), Ai  is the Airy function defined and discussed in Jeffreys' work* and 

in Appendix II.   The formula is valid for large  n. 

In order to apply (3) to (2), one sets 

z - sech n = (cos v)      ,  v = 1/z (4) 

Thus, 

2/3£ 
3/2 

/ r~2        -l 
-iv - tanh (-iv) = i (tan v-v)= IWZ   -1 - cos      1 

/•)• 

2 2 2 
tanh   n = 1-sech n = 1-z    , (5) 

and 

J   (nzW 
n 

4£ 
n1/4 

1 - z2J 

-1/3   . . / 2/3 
n    '     Ai '" ro (6) 

Here 

-£ =    3/2 >Jz   -1 - cos"1 (l/zj 

, 2/3 

(7) 

in agreement with (5).    Let n = ka, z = r/a and apply (6) to (2).   The result is 

1/4 
jx~e 

ika© 4£ 

1       2/ 2 
1 -r/a   _ 

(ka) v3 Ai r (ka)2/3
£ (8) 

or 
ik0     . . / , 2/3   \ 

M~e     g Ai \-k '   pj (9) 

* See page 1, second reference. 



Here 

9 = a0 , (10) 

> = -a2/3= (3/2*)2/3, 2/3 p3/2 = * = Jr2 -a2 - acos"1 (a/r) , (11) 

and 

g=(ka) 
-1/3 -4£ 1 

2/ 2    , 
r /a   -1 

r   4k2/3 p   ^ 
.2/2      2\ 
k yr   -a  ) 

(12) 

The non-uniform expansion is obtained from (9) by using the asymptotic 

expansion 

Ai (-£ )~-pr- £ -1'4sin (2/3 £ 3'2 + 77/4); - TT/3 < arg £  < TT/3; |£ | —' (13) 

of the Airy function.*   Let 

£ = k2'3 p .     Then  2/3 £ 3'2 = k*   and 

1     ika0 
4 7T 

,1/4 
2    2     2 

k (r  -a ) 
sin fk*+ 7r/4J , (14) 

or 

27Ti 
>,\\-ll4 ,    i k2(r2-a2)     '   Je^^^-e*^-1^} (15) 

This result may be interpreted in terms of geometrical optics with 

the aid of Figure 1. 

Two rays, each tangent to the circular caustic of radius a, intersect 

at the point X whose polar coordinates are r, 0. The two phases associ- 

ated with these rays are 

*   See page 1, second reference, p.  33, Equation (30). 



Figure 1.   Circular Caustic Corres- 
ponding to Equation (15) 

S+ = "+±T, (16) 

where 

°"+ = a(0 + a) = a0 + a cos~   (-\ ,T = \|: 
2      2 

r   -a (17) 

We see from (11) that 

a0 + * = a0 + a cos"    f-J +  T= a    +   T = g      > (18) 

hence, (15) can be written in the form 

„i7r/4 

\j27Tk 

iks- iks     - i7r/2 
z   e        + z   e      + 

(19) 



where 

z   = z+ = T-1'2   . (20) 

In (20), the amplitude and the phase of the incoming and outgoing waves are 

clearly exhibited.   The amplitudes become infinite at the caustic (T=0), and 
—ITT 12 

the phase-shift factor  e multiplies the outgoing wave.    The wave 

fronts are the spirals   S   = constant. 

Here, the uniform expansion (9-12) has been obtained directly from 

the exact solution (2).   In general, of course, the exact solution is not known. 

Then, it is necessary to use the method developed in Lewis' report* to ob- 

tain the uniform expansion.   In Appendix I, that method is applied to this 

problem, and a uniform expansion is obtained that agrees exactly with (9-12). 

Numerical computations and graphs of the exact, uniform, and non- 

uniform results will not be obtained.   For this purpose,   0= 0  may be taken, 
jlro0 

since  e is a common factor of all three results.   It is noted that ka, 
2/3 

kr, k^ , and k '   p   are dimensionless, therefore let  k=l.    The exact, 

uniform, and non-uniform results are denoted by JJ,  , [x     and n   .   Then, 
1 — •) 

Mx - Ja(r), (21) 

/  4p    \1/4 

»2 
= (~22)        Ai<"p)> <22> 

and 1/4 

**3=  \f   (   2 l 2 ) sin(* + 7r/4). (23) 
\ r   —a   / 

* 
See page 1, first reference. 



Here 

and 

2     2 -1 
* = ^ r   -a    - a cos     (a/r), 

/       \2/3 

(24) 

(25) 



SECTION II 

NUMERICAL RESULTS 

These three functions were programmed for several values of ka as 

a function of  r/a.   Figure 2 shows these curves for  ka = 2, 5, and 10.    For 

these values of ka, curves of the exact and uniform solutions are indis- 

tinguishable, and only curves of   y    and  u    are shown.    To indicate the 
•L o 

errors in the uniform approximations, a deviation curve is plotted for 

ka = 1   and ka = 2   in Figure 3.   Figure 4 is the same as Figure 2 except 

that  ka = l/2, 1/4, l/8, and l/16. 

For these values of ka, ^    has diverged sufficiently from  /x     so 
& 1 

that three curves can be distinguished.    From these curves the following 

conclusions are clear.   The non-uniform approximation is very accurate 

Figure 2.   Plot of Field versus Normalized Distance for Various ka 
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for sufficiently large  r/a and all ka.   The uniform approximation is good 

for almost all  r/a even for quite small  ka.   To indicate the actual errors 

in the uniform approximation, the maximum full-scale percentage error for 

various ka is indicated in Table I.   This is defined as 

maximum | JU-p | 100 

maximum n 

From the curves of Figure 3, it can be seen that the deviation from the ex- 

act solution at a given point may be considerably smaller than this value. 

Examination of the field on the caustic using (21), (22), and (23) leads 

to the exact solution n   - J    (ka), while the uniform approximation is inde- 

terminate and the non-uniform approximation is singular.   In Appendix III, 

an expression is developed for the uniform approximation (26). 

Table I 

Percentage Error for Various ka 

ka Percentage Error 

1/64 87.5 
1/32 57.6 
1/16 31.6 
1/8 17.3 
1/4 8.05 
1/2 3.3 
1 1.7 
2 0.45 
3 0.27 
5 0. 18 
10 0.082 
20 0.037 
50 0.017 



u = 
1/3 

" ol/3 " -2      € 
(26) 

In Figure 5, the actual percentage error at the caustic as a function of  ka* 

is plotted.   Since the largest value of the exact solution is not at the caustic, 

these errors are slightly larger than those of Table I.   As  ka becomes 

large, the error goes to zero.   As  ka  goes to zero,   u    becomes singular. 

At small  ka the exact solution approaches unity, and hence the relative 

error, (u^ -M^^ , approaches the difference. 

Figure 5.    Plot of Error on the Caustic as a Function of ka 

* This curve was suggested by D.  Ludwig, Courant Institute, New York, N. Y. 
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APPENDIX I 

THE CIRCULAR CAUSTIC 

Herein, aspects of the application of various representations of geo- 

metric optics fields near a caustic shall be considered.   The standard 

asymptotic expansion and a representation due to R.  M   Lewis* shall also 

be considered.    To be specific, the two-dimensional field that produces a 

circular caustic was chosen. 

The wave front that produces a circular caustic is a spiral determined 

by a circle and constant length string.   In Figure 6, we have the circular 

caustic of radius  a.   The points 1' and 2' lie on the spiral wave front. 

They are determined by the condition 

a. + P. = L , (27) 

where   L  is a constant and  p.   is the distance on the wave front to the 

caustic; i. e.,   p.   is the magnitude of the line segment  11' . 

The field at any point off the caustic is determined by the two rays 

that pass through the point.   In Figure 2, the two indicated rays pass 

through the point  P.    The distance from the point  i  on the wave front to 

P  is designated by   T. .    The distances from  P  to 1 and 2 are equal and 

are 

S =^r2 - a2    , (28) 

where   r £ a  is the radial coordinate of the point  P.   We note that 

Tx = Px - S , (29) 

T2 = P2 + S , (30) 

• 
See page 1, first reference. 
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or that one ray through  p has touched the caustic.   The angular location of 

points 1 and 2 are found from 

0 = 9 + cos"   Vr   , (31) 

where   6  is the angular coordinates of P.   Using (30),  (27), and (28) on 

(29), the following is obtained: 

T]L - L-a(e - cos-1 a/r)- ^jr2 - a2   ; (32) 

T   = L-a (e - cos"1 a/r)+ \|r2 - a2   . (33) 

The standard asymptotic formula* for the field at  p  is 

u - Zx (1 - T^f e* £l + *l) • Z2 (1 - r2/p2)"l/2 e*(*2 + T2>    <34> 

where the subscript refers to the ray.    This expression differs from that in 

Lewis' report* since this is a two-dimensional problem where   p  is used 

instead of the curvature   «• .     The term associated with the second ray 

involves taking the square root of a negative quantity.   This indicates the 

phase shift of  7r/2   at the caustic.    This formula is not valid at the caustic 

since it is singular at such points.   Using the previous results for the 

circular caustic, relation (34) becomes 

/2       2xV4   

Mr   " a  ) ik(Sl + L - a9 + a cos"1 a/r - ^r2 - a
2) 

-\l/2   e 

d -1 a/ V IL - a cos       /rJ 

/ 2       2\"l/4   

+ 2 ^   "a\l/9    6%   +L-a0-acos"la/r+^r2-a2- Tr/2k) 
/ -la/ W \2 ' 
(l - a cos    a/rJ 

(35) 
* 

See page 1, first reference, Equation (93). 
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For computation, the following assumptions are convenient, 

iksi 
Z   e = Z   e     * = k 

X — 
^^^(L-acos-^/r)1/2, (36) 

9 = 0 (37) 

Equation (37) requires that the field is constant along the wave front, and 

the results must be normalized so that this constant is unity. That 0 = 0 

follows from a reasonable choice of coordinate system. 

To simplify the result,   L can now be chosen such that 

ikL   -i7r/4    , 
e       e =1 

Then (35) reduces to 

ikL    +i 
. e       e     TT/4 .    /, -1 a,      .  x| 2       2 ,     ,.\ 

u = 2i    1/2/2 2Yl/4 Sln \     cos       /r ~ k \lr    ~ a   + Tt/4 \ ,11 2 
k      Ir   - 

and Equation (39) is rewritten 

2 
u  2"\l/4    sin \ka cos      a/r " k^r    " a   + ""/*/' 

k '    (r   - a  ) 

(38) 

(39) 

(40) 

Lewis* gives a uniform asymptotic expansion 

1/2   1. il/2    -i7r/4 
u= 7T '     |£| '    e      ' Ai     -£ 

Z   . 
ikb. ikbr 

Z26 

;  11/2 +
 T:      mi/2 

1  -T   p       ' 1  - T   /p        ' 

i Ai ''(•>') 

ikb. 
Zx e 

^v^ 1/2 

i/pif"   v-\^ 

h^L 
1 - T

2/^ 
1/2 

(41) 

* See page 1, first reference, Equations (68) and (69). 
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where 

£=(3k/4)l/3(T2-T1)l/3 

and 

b. = s. + V
T2 

i      i 2 

(42) 

(43) 

Using Equations (32), (33), (36-38), and (41), 

_     1/2     (3k/2J (u2 - a2 - a cos"1 a/r ) 
1/6 

,1/2/2 2\ 1/4 
k      \r    - a ) 

Ai (3k/2) v   2       2 -1 a/ \|r   - a   - a cos     tt/r 
2/3N 

(44) 

Note the disappearance of the derivative of the Airy function because 

of the symmetry of the caustics.   If the asymptotic expansion of the Airy 

function* is used in (44), Equation (40) is recovered. 

The comparison of Equations (40) and (44) with Equations (22) and (23) 

shows agreement except for a numerical constant of Nl/27r .    Thus, a check 

is provided on the validity of the manipulations.   This factor arises from 

the arbitrary choice of amplitude for the wave. 

See page 1, second reference, p. 33, Equation (30). 
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APPENDIX II 

THE AERY FUNCTION 

The Airy function is defined (e. g. , in Jeffreys' work)   as 

e «*^tS dt   , 

L, 

Ai(z) 
27Ti    J 

(45) 

where   L     is the contour in the  t-plane shown in Figure 7. 

The transformation  t = is   is introduced.   Then for real   z  the trans- 

formed contour can be shifted to the real axis, and 

Figure 7.   Contour Relevant to the 
Airy Function 

\ 

o 
CO 
h-_ 

to 

1 < 

* See page 1, second reference, Equation (1). 
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1     f    i(xz+s/3) 
"    27T      J   6 Ai(z) = ——   \ e '     ds ;   z real (46) 

is obtained. 

An alternative representation is 

00 

Ai(z) = - \ cos(sz+s3/3) ds ;   z real   . (47) 

17 



APPENDIX El 

THE UNIFORM ASYMPTOTIC FIELD AT THE CAUSTIC* 

A quick examination of Equation (44) or, equivalently, (22) does not 

indicate that the uniform asymptotic expansion is finite at the caustic. 

In Lewis' report', it was shown that this was generally true.   Here, this 

shall be shown directly from Equation (22).   The resultant formula will also 

give a simple expression near the caustic.   Let 

r = a (1 + e)   , (48) 

where   €  is a small positive quantity.   Then 

S~2       2~ I 2 I 
Nr   - a    =   a\2e+e   ~a\|2e   , (49) 

and from relation (24) 

* _ Jr2 - a2 -1 
 - — = cos     (a/r)   . (50) 

Taking the cosine of both sides and expanding the power series to second 

order in   e   and first order in  * , 

2(2"    e3/2 

*=^P-   ~r (51) 
3 1/2 

a 
is obtained.   For the field near the caustic, the following can now be 

obtained. 

--©"« kin 
*We wish to thank J.  D. R.  Kramer of The MITRE Corporation, Bedford, 

Mass. for this derivation. 

tsee page 1, first reference, Equation (6). 
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